Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicon ; 233: 107266, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37625553

RESUMEN

Jellyfish venoms have long been recognized as a potentially rich source of natural bioactive compounds with pharmacological potential for the creation of innovative drugs. Our previous study demonstrated that Nemopilema nomurai jellyfish venom (NnV) has a chymotrypsin-like serine protease with fibrinolytic activity in vitro. Therefore, the present study aims to investigate the potential effect of NnV on cell migration, proliferation, and differentiation of vascular smooth muscle cells (VSMC; A7r5 cells) involved in the probable mechanism pathways. We also determined its anti-thrombotic effect through κ-carrageenan-induced Sprague-Dawley (SD) rat tail thrombus model. NnV inhibits on Platelet-derived growth factor (PDGF)-BB-stimulated A7r5 cells migration and proliferation by decreasing matrix metalloproteinase 2 (MMP-2) level and phosphorylation of ERK and Akt in a dose-dependent manner, but not p38. Furthermore, NnV regulates the phenotype transition of differentiation in PDGF-BB-stimulated A7r5 cells via ɑ-SMA and calponin in a dose-dependent manner. In an in vivo study, NnV treatment demonstrated clear anti-thrombotic activity in a dose-dependent manner, which was associated with decreased thrombus formation and length in κ-carrageenan-induced SD rat tail. These findings suggested that NnV has a novel fibrinolytic enzyme that can be used to prevent and/or treat thrombosis-related cardiovascular disorders.


Asunto(s)
Venenos de Cnidarios , Trombosis , Ratas , Animales , Ratas Sprague-Dawley , Becaplermina/farmacología , Venenos de Cnidarios/farmacología , Carragenina , Metaloproteinasa 2 de la Matriz , Músculo Liso Vascular , Cola (estructura animal) , Fenotipo
2.
Sci Rep ; 8(1): 2808, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29434219

RESUMEN

Epithelial-mesenchymal transition (EMT) is a key initial step in metastasis for malignant cancer cells to obtain invasive and motile properties. Inhibiting EMT has become a new strategy for cancer therapy. In our previous in vivo study, Nemopilema nomurai jellyfish venom (NnV) -treated HepG2 xenograft mice group showed that E-cadherin expression was strongly detected compared with non-treated groups. Therefore, this study aimed to determine whether NnV could inhibit the invasive and migratory abilities of HepG2 human hepatocellular carcinoma cells and to examine its effect on EMT. Our results revealed that transforming growth factor (TGF)-ß1 induced cell morphological changes and downregulated E-cadherin and ß-catenin expression, but upregulated N-cadherin and vimentin expression through the Smad and NF-κB pathways in HepG2 cells. Treatment of TGF-ß1-stimulated HepG2 cells with NnV reversed the EMT-related marker expression, thereby inhibiting cell migration and invasion. NnV also significantly suppressed the activation of p-Smad3, Smad4, and p-NF-κB in a dose-dependent manner. These data indicated that NnV can significantly suppress cell migration and invasion by inhibiting EMT in HepG2 cells, and therefore might be a promising target for hepatocellular carcinoma therapeutics.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Venenos de Cnidarios/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , FN-kappa B/antagonistas & inhibidores , Proteína smad3/antagonistas & inhibidores , Proteína Smad4/antagonistas & inhibidores , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , beta Catenina/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-27974900

RESUMEN

Rumex japonicus Houtt. is traditionally used as a medicinal plant to treat patients suffering from skin disease in Korea. However, the beneficial effect of Rumex japonicus Houtt. on hair growth has not been thoroughly examined. Therefore, the present study aims to investigate the hair growth-promoting effect of Rumex japonicus (RJ) Houtt. root extract using human dermal papilla cells (DPCs), HaCaT cells, and C57BL/6 mice model. RJ induced antiapoptotic and proliferative effects on DPCs and HaCaT cells by increasing Bcl-2/Bax ratio and activating cellular proliferation-related proteins, ERK and Akt. RJ also increased ß-catenin via the inhibition of GSK-3ß. In C57BL/6 mice model, RJ promoted the anagen induction and maintained its period. Immunohistochemistry analysis demonstrated that RJ upregulated Ki-67 and ß-catenin expressions, suggesting that the hair growth effect of RJ may be mediated through the reinforcement of hair cell proliferation. These results provided important insights for the possible mechanism of action of RJ and its potential as therapeutic agent to promote hair growth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...